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k
2
a
2 Directed Jet

r
Ray1ei

~~ 

--

1 0.00 0.0000 0.0000

• 0.05 0.1536 0.1536

0.10 0.2107 0.2108

0.20 0.2793 0.27914

0.30 0.3181 0.3182

0.140 0.3381 0.3382

0.50 0.31429 0.31432

• 0.60 0.33141 0.331414

0.70 0.3107 0.3111

o.8o 0.2696 0.2701

0.90 0.2010 0.2015

1.00 0.0000 0 .0000

Table 1: Compar ison of the frequency 
~~ 

(in non-dimensional

form) over the range (314) of unstable wave1en~ths

as predicted by Eq~ (33) o•f the direct theory of

• 

• 
jets and by Eq. (140) due to Ray~~i~~. E1,2J.
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I 
~~~ A viscous elliptical j et wit hout rotation or twist.

In this section we consider a jet of an incompressible linear viscous

fluid; and, in view of the results for the stability of an inviscid Jet, we

limit the discussion to motions in which

- w1 w2 = O  , 9 =c o n s t .  (145)

1 To account for the viscosity of the fluid medium, we must provide appropriate
-~~~~~~~~ • • • 

A A ~I constitutive equations for the quantities ti , ii and p . Much of the develop-

• ment of this section is similar to that of’ Green [101 in which the jet is

restricted to be circular.

Referred to the orthonorinal basis (e1,~~ ,e3) introduced in section 2, the

response functions can be expressed in terms of their components in the form

A Aj A~ A~j Arj t~yj
n = n e. , ii = rr  e. , p = p  e
v... —1 — ‘-‘1 —

As a consequence of the symmetry of the assumed flow, (10) to (12) suggest

:1 that we put

A1 ~
• • n• = n  = 0 ,

Ti ‘ 

A12 A13 ~2l 
,s23

It =11  = 1•T =11  =0 , (147 )

A12 Al3 ~~1 
t~€3p = p  = p  = p  = 0 .

With the help of ( 14) to (6) and (146), the mecha nical power (19) reduces to

-
~~~~ 

p ~~~ + ~
*1l

C~ + ~~22~~ + 
~~

ll
~1~ 

+ ~~22~ (148)

where we have set

= Ø ( ~~~/z’) ÷0~~~~~ ‘ 
(no sum on ~ ) . (49)

• We seek to characterize the linear viscous property of the fluid in appropriate

• 
- constitutive equations for the one-dimensional functions

H 
~ 15.
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• • A3 Axll A~22 A*ll Ax22n ,n ,u ,p ,p . (so)

To this end, we assume that the quantities (50) are linear functions of degree

one in the kin ematic variables

v ,C1,C2,C1 ,~2 (51)

with coefficients that depend upon Oi 
and 

~2 
Hence, we take

A3
• n X1v

~ 
+ x2 c~ + x3

= x + x ~~~ , (52 )
(no sum on c~)

— +4 X6~~~ “7~~~z

• where ~~~~~~~~~~~~ are functions of and 02 and we have used (9) to
• 

• . A4(~yç~eliminate v from the expressions for n and p

A three-dimensional linear viscous fluid is isotropic. In order that the one-

dimensional theory under consideration reflect the symmetry properties of the fluid

• • and the geometry of the jet , we impose the requ irement that under the transformations

z -’-z , v -.-v , 0~~— . 0~ , (53)

the mechanical power (48) remain invariant . Consequently , under (53 ) the

functions (50) must transform according to

I 
A3 A3 ~~~~

- . (514)

Hence the relations (52) reduce to

16.
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• • • • 
A3• : - = X

1
V + X ~~ C

• = (no sum on ~ ) , ( 5 5)

= xrc~ 
(no sum on

In order to determine explicit values for the coefficients in (55) , we

recall briefly some aspects of an approximation procedure for rod-like bodies

in the three-dimensional theory. A detailed development of this procedure can

be found in Green et al. [12) and a brief outline is included as an appendix to

Caulk end Naghdi [11]. Without going into detail, we recall that the developments

in Green et al. [12) are based on an approximation for the position vector to the
*

material points in the rod-like body and involve integration of the three-dimensional

equations through its cross-section. Let the material points be identified with the

convected coordinates 9~ (i=l ,2,3) and, for convenience, set ~~~~~ Further, let

4 p denote the position vector of a typical point at time t. Then,

p = p ( 9 ~,~ ,t) =
~~~~~~~

(56)

H ~~ij ~~~i~~~j  , ~~~~~~~ = ~1 
, g~J = g ~~.g

3 
, ~~= d e t~~~~

where and are the covariant and contravariant base vectors , g1~ 
is the

metric tensor, g~~ its inverse and is the ~ronecker delta. In the present

context the fluid is assumed to occupy a region of’ space in the neighborhood

of the curve B~ = 0 , bounded by the free (material) surface

= 1 , (5 7 )

where we identify 9~ =0 with the z-axis. With the help of ( 14),

• *It should be mentioned that the one-dimensional equations that result from
• • this procedure can be brought into 1-1 correspondence with the theory of a

directed curve.
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• the approximation for the position vector mentioned above leads to

p = z (~~~, t ) e~~~+ e
1
Ø1(~ ,t)e1

+ e2~2(~,t)~ , 
. (58 )

I It follows from an examination of the second and third terms of (58) that

(57 ) represents an elliptical cross-section with semiaxes ~~. The veloc ity

which is the material time derivative of p, is given by

1 2
• 

V = ye
3 

+ 9 O1~~
ea 

+ 8 ~~~~~~

where we have used ( 14),  (8) and ( 1 4 5) .  For an incompressible linear

viscous fluid, the determinate part of the stress response is given by

T T
1
~g. , T~~. 

~~~~~~~~~~~~~~~~~~~~~ 
‘ 

(6c )

where r. . and. 13 are the covar iant and contravar iant comoonents of the stressiJ

tensor , p is the shear viscosity and a conuna denotes partial differentiation

with  respect to 9~. ~e may now use (57), (59) and (60) in the usual

expressions t for the quantities (146) in terms of integrals over a cross-

section of the rod-like body. The results of this rather long but routine

calculation are

= 2~j .~T

= 
~~~~~

~ (ri o sum on
• .~ 2 ,.

• p - 

~~ ~1*2~~~~z ~

• so that we may identify

• tSee , for example , equation (A13) of Caulk and Naghdi Eli].
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1’ = 2~~ 0102 = 0 , X~
1 

= 2~~ ~1~2
1~~~~~~~~~~

-. (62 )
11 i 22 i 3 12 21 12 21

X
7 ~20l Xr( ~~~~~~IJ 1 T O

1~~2 
X 14 ~~~X14 ~~~~~~ - X

7 
= 0

in (5~ ).

Adopting the values (62) and using the constitutive equations (55) in

the field equations (10) to (13), we obtain the governing differential equa-

tions for a linear viscous jet , namely

t Itp 0102
(v
t 

+ vv 5 ) = - p
~ 

- 020i~
h(

~ 1,02
) - 

~1~2~ h(02,o1) +2~~(~102v )

• ‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

= p + O 1O2h( O1,~ 2 ) + ~~~~It(0~~2 C1 ) , (63)

• ~ np*030 (c +v C + ~~ ) + 2 ~~ ø102~2 
= p+~~1~2h( Ø2 ,~ 1) ÷ ~~ ~

It(
~~~l~~~

)

where use has been made of (4~ ) and (17) and we have let

- 

h(01,02 ) = h (~ 1,02 ,0) . (614)

The set (63) is completed by add ing (8) and (9). Apar t from differences

in notation , we note that (63)
~ 2 ~ 

reduce to those given by Green [10,

:~s. (6.3) and (6.4))  in the special case of a circular cross-section

and. in the absence of gravity.
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5. Small motions superposed on a uniform flow of’ a viscous jet.

The motion (23) satisfies the differential equations (63) , (8) and (9);

• and, hence, it also represents an exact sciution for the viscous jet discussed

• In section 14. Since in the case of an inviscid jet (see section 3) the

superposed rotations ~~
‘ had no effect on the resulting differentiation equa-

tions, for simplicity we assume that = 0 here and consider small motions

superposed on the uniform flow (23) in the form specified by the first two

• of (25) and. the fourth of (25). In a manner similar to that employed in

section 3, we again neglect squares and products of quantities represented by

symbols with superposed tildas in (63), (8) arid (9).  After setting v0=0

without loss in generality, the resulting linearized equations are

~
1 p a

2
V
t 

= - 
~~~ 

+I
~~~~1 ~~2~z 

+2~~a
2v

~~ffp a lt + 2 a 2
~l = p +~ T[~~ (3~1+ O 2 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 (65 )
P ~~n Q a t + 2~~ a2

~~ = p÷~~T[~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
C2zz

÷ C1 + = 0 = a~ 1 ‘ 02t =

where again for convenience the tildas have been omitted.

Again we utilize the change of variables (28) and by adding (65)2 and

(65 )
3~ with the help of (65 )

~~ 5 6 ~ 
we obtain

• 

• ~- T p a v ~ ~~~~~~~~~~~~~~~~~~~~~

~r a
~~~~~

+2
~~

a
~t 

= ~~~~~~~~~~~~~~~~~ ~

3

~tzz 
(66 )

2
~~~~

av , = O

- 

• - Subtraction of (65) 3 from (65 ) 2 , after ~~~~~ (28)  ~~~ (65 )
5,6~ 

yieid~
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• 1 ~ p a 35tt +t
~

a6t = T(a 2 6~~~
_ 3 6 ) +

~ ~a36t~~ 
. (67 )

• Thus, the linearized system (65 ) is decoupled through the change of variables

• (28), just as in the case of the inviscid jet. Again the solution of (65 )

will have the form (37 ) and decompose into a symmetric mode 0 and an

anti-symmetric mode 6. Eliminating p and v among (66)l,2,3~ for the symmetr ic

mode we obtain

~ 
a
2
Ott~~~

_20tt ~~ (~ a2
05~~ 5

_ 6 0
5~~

) t +4  (a 2
O~~~~~

+ O )  . (68)

For solutions of (68) to be of the form (32), :0
and k0 must satisfy

* 
(~ k~a2 

+ 3)k
2
a
2 

(i - k
2a2)k2a

2

(.)2 ÷ a O  
1 2 2  

(.a ) 2 P a  
2 2  (69 )

~~k0a +1 ~~k a  +1

It follows from (69 ) that ia can be real and positive if and only if

k2a2 < 1  . (70)

Hence the range of unstable wavelengths for the symmetric mode is precisely the

same as for an inviscid jet. The effect of viscosity in the present case is to

diminish the magnitude of over the range (70) and therefore retard the •
impending dIsintegration of the jet . As in section 3,we consider solutions for

the anti-symmetric mode in the form (35). Using (35 ) in (67 ) we obtain

the relation

• 
(ia
2
)
2+

~~~a
2 
(k~a

2
+8)(i~2

)+-~~3 
(k~a

2
~~3) = 0 (71)

between 
~2 

and k
2
. From (71) one can show that Ia2 

has a negative real

part for all values of k2. This indicates , as In the case of the iriviscid jet,

that the anti-symmetric m ode is stable for disturbances of all wavelengths.

The effect of viscosity, however, is to damp the disturbance in proportion

_ _ _  

_ _ _ _ _ _  

— - •~~~~~~~~~~~~~~~~~~~~ -~~~~~

— - ‘.~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ,



Fl

to the magnitude of the shear viscosity ~. Critical damping for a given value

of k2 corresponds to

A
2 = = 

16(k
2
a +3) 

(72) j
where we have introduced the non-dimensional parameter A for later convenience.

We close with a comparison of certain results of this section with those of

a similar investigation by Weber [14] who has examined small axially symmetric

per turbations to uniform flow of a cylindrical viscous jet using an approximate

form of the linearized Navier-Stokes equations. Weber’s procedure employs

specific assumptions on the variation of stress and velocity in the cross-

section of the jet and ignores all but the axial component of momentum. This

approach leads to a one-dimensional reduction of the three-dimensional equations

and corresponding to (69 ) gives

(ia )
2 

+ 
~~2 

3k
2a2(ia) = 

* 3 (l-k
2a2)k2a2 . (73 )

p a  2pa

A plot of ia0 versus k0a is given in Fig. 1 for various values of the parameter

A over the range (70) of unstable wavelengths , using both (69 ) and (73). it

can be seen from this graph that the difference between the results of each

approach is greatest for an inviscid jet (A=0) and gradually diminishes with

increasing viscosity, other things being equal.

On the basis of the close agreement (Table 1) with the exact three-

dimensional analysis of Rayleigh [1,2] for an inviscid jet (A=0), it is

reasonable to infer from Fig. 1 that for a viscous jet the results of this

section constItute an improvement over the approximate treatment of Weber [14].

In support of this inference, we appeal to some numerical results recorded in

* 2The parameter A can be recognized as twice the ratio of the Weber number to
the square of the Reynold ’s number .
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Chandrasekhar [6) which are based on the implicit dispersion relation obtained

from the linearized Navier-Stokes equations~ Figure 2 shows a magnified portion

of one of the curve pairs in Fig. 1 corresponding to A = 0 .5 along with points

obtained from the tables in Chandrasekhar [6] . We show the region near

max imum in view of its importance in the breakup process. The fact that the

theory of a directed fluid jet offers an improvement over Weber ’s results is

clearly evident .

Acknowledgment. The results reported here were obtained in the course of research
supported by the U.S. Office of Naval Research under Contract N000114-76-C-014714,
~‘oject I~B 062-5314, with the University of California, Berkeley.
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I

~The difficulty in dealing analytically with this same dispersion relation is
what led Weber [14) to consider an approximation to the three-dimensional
equations.

23.

- 
__fl dr. •-•—-••- • • • • • ~~- - - - - C0 • . S  • • - — • • •~. .~~W~— a#-

~~~~~~~~~~ -~~~~• - ~~~~~-•
-

- • 

• • ;  
~~~~~~~~~~~~~~~~~ ~~~~~~~~ •

~~ 
••• _

~~~• f - 
~ .‘ ~

-• •• - -~~~ . • - .-
— 

~~~~~~ .~~~~~~ ———-~-— - — —— ‘-‘ i — F



r - - -
~~
-

~~~~~~
—-- - -

~~~~~~
—---—

~~

References

F 1. Lord Rayleigh , On the Instability of Jets. Proc. Lond. Math. Soc. 10,
14 (1879).

2. Lord Rayleigh, On the Capillary Phenomena of Jets. Proc. R. soc. ~~~~,

71 (1879).

3. Lord Rayleigh, On the Instability of a Cylinder of Viscous Liquid Under
Capillary Force. Phil. Mag. Ser. 5 ~~~~, 1145 (1892).

14. C. Weber , Zuni Zerfall eines Fliissigkeitsstrahles. ZPJvIM 11, 136 (1931).

5. J. B. Keller , S. I. Rubinow and Y. 0. Tu, Spatial Instability of a Jet.
Phys. Fluids 16, 2052 (1973).

6. S. Chandrasekhar , Hydrodynamic and Hydromagnetic Stability. Oxford:
Clarendon Press (1961).

7. A. E. Green, P. M. Naghdi and M. L. Werner, On the Theory of Rods.
• II. Developments by Direct Approach . Proc. R. Soc. Lond. 

~~~~ 1485
(19714).

8. A. E. Green and N. Laws, Ideal Fluid Jets. Irit. J. Engng. Sd. 6, 317
(1968).

9. A. E. Green, Compressible Fluid Jets. Arch. Rational Mech. Anal. ~~~~,
189 (1975).

10. A. E. Green, On the Nonlinear Behavior of Fluid Jets. m t .  J. Engng. Sci.
114, 149 (1976).

11. D. A. Caulk and P. M. Naghdi , The Influence of Twist on the Motion of
Straight Elliptical Jet . To appear in Arch. Rational Mech. Anal. =
Report No. UCB/AM-77--5, Office of Naval Research Contract N000l14-
76-C-014714, Univ. of Calif., Berkeley (June 1977).

12. A. E. Green, P. M. Naghdi and N. L. Wenner, On the Theory of Rods.
I. Derivations from the Three-Dimensional Fquations. Proc. B. Soc.
Lond.. ~~~~ 1451 (19714).

13. D. B. Bogy, Use of One-Dimensional Cosserat Theory to Stud~r Instability• in a Viscous Liquid Jet. Phys. Fluids 21, 190 (1978).

114. H. Lamb, Hydrodynamics, 6th edn . Cambridge University Press (1932).

214.

k ~ _______________________ • 
- • —~ •- - ________

hI.L _~ •.~1 ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
• 

~~~
‘ -

— —- •-- - - -
~
—•-——- .---

~~
- • • • - - - •-••— • ———--“  • •~~ • • ••—•—-- -~~

• ~~~~~~~~~~~~~~ •~p~~ L-~~~ ’ • • • • :  ~ • . - _•*e~~~~~



Th

~~~TTTE~~ ~~~ IIT~ ~~~~~

-‘-

~~~~

-

~~

• •

• Q, Q) w Q,
~~~~~~~~4 H

.,.4• ~~~~~~~
~ +) O)

‘ ‘O  ~~1~~~4o
— — — ~~~O II)

— .— I ~~~ c-I ~Q
—. I ~I .~~~O W  ,—4

.0~ I, / 1 ~/ I o v ~~~c-. a)
/ / I ~~~~~~~~

/ / I/ - J •~~~~~/ I
/ I + r-3 E-4 i

g / I 0 0 )  H G)
/ / I w~~ o~~/

I~~. 1 •I 

~~ / 1 ~d ~ j *’ii I I
d ~ I/ I .~~.a c~~~~I / j  -4-~~~~ ~D W

• I I I
• ‘ C sJ .

I ~~ I
‘I~~~~~ I 1

‘I
‘I ~I ~~~O O I

a ø~~~)

‘I ‘ ~~•‘~ : 0 o~~~,dg ~~-
~~ ~~O G )~~~~~~~O

0 •

II
0 ) 0)
4~~~•~ •~ : 0

• 0 •.-l
• 

~~O •—’ 0 ) + ) s~

H
O i ~~~~~ d t ~Qi’— k r 1  I
ai ~~~ O 0 ) .

-
~~ • .,~~~~~~ Q4~~~~~G) ,-4

~d O  r1~~~4
.-I .—-4 ~. .O 0)

- * - ‘E o  +‘~~~~•r1 .,-l~~~~~ C) E-4

o o ~~ ~~n
F (‘J

~ d 0) ,—~ ti)
rI ~~~~ +~a ~., O O C ’ ~I a i
0) .—,~~~ •n aso

H

~o I  L~2~ 
0 4~~~~

L 

• I ~~~~

25. 
-



“
—I’

• 
— — — 0~~~4 0

• — — p4
— ~~~~

—— P 4 0 4 - ’
• —

— p4 ~
• I -• 0

• 0 )0

/
•~~ 4.)

I - 0 ) 0

.4 +) .

0
.~~~~ •Q 0 ) 0 )

~~~~~~~~~0 .u~~~
• 0 Co

r .- ~~~~~ ~~

Ca +, O

• ..-( o I—,

-~~~

‘1••• •O~~I 4’ ~~I..-4 0)

-

• 
•
~~ I I

• 0~’ F— (0 °
OJ C4 N OJ ~~~~~~~~~~~~~~~~~

b0~

ç

~~.

26. 

-

•

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - 
~~~~~~ 

_ _ _  

-



r --

~~~~~~~~~

-- - -- --

~~

-

~ ~~~~~~~~~~~~~~~~~
•

-—

~~~~

- ------ — — -  - - - - - 

~~~

- — - - -  - - -

~~~~~~~~~

- -—------ -- - —-

UNCLASS IFIED
S uRIT’t CLASSIFICATION OF THIS PAGE (R7. n Data Ent.,.d)

DrDrl OY r1At 1 Iii ~~IJT A TIAU D A~~E READ INSTRUCTIONS
• I~~~ r ~~I~~I ~~~~~~~~~~~~~~~ U ~~ I I BEFORE COMPLETING FORM

I NEPORT NUMB ER 2. GOVT ACCESSION NO. 3. REC IPIENVS C A T A L O G  NUMB LR

UC B/AM-78-3 1 
___________________

• 4. T ITLE  (ond S..busI .) S TYPE OF REPORT & PERIOD COVERED

n The • .n~et of ~~eakup in Inviscid Technical Repor t
• irnd Viscous Jets 4. PERFORMING ORG. REPORT NUMBER 

-

7. AUTHOR(s) S CONTRACT OR GRANT NUMBER(s)

D. A. Caulk and P. M• Naghdi N000l14_76-C-01471(

• I. PERFORMING ORGA NIZAT ION NAME AND ADDRESS $0. PROGRAM ELEMENT. PROJE CT . ‘IA SIC

Department of Mechanical Engineering A REA 0 WORK UNIT NUMBERS

University of California 
~~ 062-536

Berkeley,_California 914720 ____________________________
II. CONTROLLING OFFICE NAME AND ADDRESS $2. REPORT BATE

Fluid Dynamics Program 
~ 1~Y78• Office of Naval Research $ 3. N U M B E R  OF PA

1
GES

Arlington , Virginia 22217 26
$4. MONITORING AGENCY NAME a ADDRESS(U dS ff ar .n I from ControllIng OWcs ) IS. SECURITY CLASS. (.1 thai r.pott)

$1. DECI. *551 FICAT ION/ DOWN GRADING
SCHEDULE

IS. DISTRIBUTION STATEMENT (of thu Ropers ) 
—

Approved for public release; distribution unlimited

I?. DSSTRISUTION STATEMENT (of IA. .b.b. ct .nt•,.d In asook 3O~ It dilt.r.n t fo ul Ropers)

IS. SUPPLEMENTARY MOl ES

• IS. KEY WORDS (CiniMu. on r•verii .sa. at nic. .~~ y W Id.n(14’ by block rnoub.r)

. Instability of jet F , incompressible , inviscid -

and viscous fluids , direct approach , surface tension , one-dimensional
• . theory of a directed fluid jet , differential equations for small motion

on uniform flow , comparison with available results from the three-
- dimensional theory. 

____________

20. ABSTRACT (Continu, on r.vn.. . fdo  it n.c...aty wd Id.nU~ ’by block nomb.r)

This paper is c~ncerned with the instability of inviscid and viscous
jets utilizing the basic equations of the one-dimensional direct theory
of a fluid jet besed on the concept of a Cosserat (cr a directed) curve.
First , a system of differential equations is derived for small motions
superposed on uniform flow of an inviscid straight circular jet which
can twist along its axis . Periodic wave solutions are then obtained

(continued )

• DD , ~~~~~~~ 1473 EDITION OF I NOV U IS OBSOLETE UNCLASSIFIED
S/N 0102•014•  440 5 I

SECURITY CLASSIFICATION OF THIS PAOV (~~t ie bit. tr t.r. ~~

1 ~~ 
.. — _ _

~~~~~~~~~ ~~~~~~~~~~~~



UNCLASSIFIED 
_______

• ..L~..IJMITY CLA S S I F I C A T I O N  JF THIS PAOE-$h.i. flit . Ent.~.d)

20. Abstract (continued)

• for this system of linear equations ; and , with refer ence to a description
of growth in the un~:sble mode, ~the comparison of the re~i4ting dis-
persion relation is ~:urid to agree extremely well with t~e classical

• (tbree-dim ensional~ results of Raylei~h. Next, constitutive equations
are obtained for a viscous elliptical jet and these are used to 

-

- discuss both the syi~metiic and the anti-symmetric small disturbances
• • in the shape of the free surface of a circular - jet. Through a compari-
• - son with available three-dimensional numerical results, the solution

obtained is shown to be an improvement over an existing epDroximate
solution of the problem. 

-

•
~ 

I

I

IC

4 . :
UNCLASèIFIED

SECURITY CLASSIFICATION OF THIS PAGE(*1~.n Oat. £nt,r•d)

I 
_ _  —- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~-~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


